AN ALGORITHM TO RECOGNIZE MULTI-STABLE BEHAVIOR FROM AN ENSEMBLE OF STOCHASTIC SIMULATION RUNS by

نویسندگان

  • Eduardo Monzon
  • Reyhan Baktur
  • Mark R. McLellan
  • Chris Winstead
چکیده

An Algorithm to Recognize Multi-Stable Behavior from an Ensemble of Stochastic Simulation Runs

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing a new multi-objective fuzzy stochastic DEA model in a dynamic ‎environment to estimate efficiency of decision making units (Case Study: An Iranian Petroleum Company)

This ‎paper presents a new multi-objective fuzzy stochastic data envelopment analysis model          (MOFS-DEA) under mean chance constraints and common weights to estimate the efficiency of decision making units for future financial periods of them. In the initial MOFS-DEA ‏model, the outputs and inputs are ‎characterized by random triangular fuzzy variables with normal distribution, in which ...

متن کامل

Predicting cardiac arrhythmia on ECG signal using an ensemble of optimal multicore support vector machines

The use of artificial intelligence in the process of diagnosing heart disease has been considered by researchers for many years. In this paper, an efficient method for selecting appropriate features extracted from electrocardiogram (ECG) signals, based on a genetic algorithm for use in an ensemble multi-kernel support vector machine classifiers, each of which is based on an optimized genetic al...

متن کامل

Designing an Optimal Stable Algorithm for Robot Swarm Motion toward a Target

In this paper, an optimal stable algorithm is presented for members of a robots swarm moving toward a target. Equations of motion of the swarm are based on Lagrangian energy equations. Regarding of similar research On the design of swarm motion algorithm, an equation of motion considered constraints to guarantee no collision between the members and the members and obstacles along the motion pat...

متن کامل

A new stochastic 3D seismic inversion using direct sequential simulation and co-simulation in a genetic algorithm framework

Stochastic seismic inversion is a family of inversion algorithms in which the inverse solution was carried out using geostatistical simulation. In this work, a new 3D stochastic seismic inversion was developed in the MATLAB programming software. The proposed inversion algorithm is an iterative procedure that uses the principle of cross-over genetic algorithms as the global optimization techniqu...

متن کامل

An Analytical Model for Predicting the Convergence Behavior of the Least Mean Mixed-Norm (LMMN) Algorithm

The Least Mean Mixed-Norm (LMMN) algorithm is a stochastic gradient-based algorithm whose objective is to minimum a combination of the cost functions of the Least Mean Square (LMS) and Least Mean Fourth (LMF) algorithms. This algorithm has inherited many properties and advantages of the LMS and LMF algorithms and mitigated their weaknesses in some ways. The main issue of the LMMN algorithm is t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013